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Abstract

In the standard model of observational learning, n agents sequentially decide between two
alternatives a or b, one of which is objectively superior. Their choice is based on a stochastic
private signal and the decisions of others. Assuming a rational behavior, it is known that infor-
mational cascades arise, which cause an overwhelming fraction of the population to make the
same choice, either correct or false. Assuming that each agent is able to observe the actions
of all predecessors, it was shown by Bikhchandani, Hirshleifer, and Welch (1992, 1998) that,
independently of the population size, false informational cascades are quite likely.

In a more realistic setting, agents observe just a subset of their predecessors, modeled by
a random network of acquaintanceships. We show that the probability of false informational
cascades depends on the edge probability p of the underlying network. As in the standard
model, if p is a constant, the emergence of false cascades is quite likely. This extends the result
of Bikhchandani et al. (1992, 1998) as their model corresponds to p = 1. In contrast to that,
false cascades are very unlikely if p = p(n) is a sequence that decreases with the size n of
the population. Provided the decay of p is not too fast, correct cascades emerge almost surely,
benefiting the entire population.
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1. Introduction

In recent years, there has been growing interest in modeling and analyzing processes of
observational learning, first introduced by Banerjee (1992) and Bikhchandani et al. (1992,
1998). In the model of Bikhchandani et al. (1992, 1998), individuals make a once-in-a-
lifetime choice between two alternatives sequentially. Each individual has access to private
information, which is hidden to other individuals, and also observes the choices made by
his predecessors. Since each action taken provides an information externality, individuals
may start to imitate their predecessors so as to maximize their objective. Although such
herding behavior is a locally optimal strategy for each individual, it might not be bene-
ficial for the population as a whole. In the models of Banerjee (1992) and Bikhchandani
et al. (1992, 1998), imitation may cause an informational cascade such that all subse-
quent individuals make the same decision, regardless of their private information. One
of the main results in Banerjee (1992) and Bikhchandani et al. (1992, 1998) states that
the probability of a cascade that leads most members of the population into the false
decision is constant, independently of the population size.

The work of Bikhchandani, Hirshleifer and Welch has been widely recognized, and
set of interest in the importance and ubiquity of informational cascades. Besides being
investigated in several scientific papers in the following years (see Sect. 1.3 for a literature
review), it also attracted attention in the popular press (The Economist, 1994; Investor’s
Business Daily, 1994; Business Week, 1995; Fortune, 1996).

The result of Bikhchandani et al. (1992, 1998) seems counterintuitive to our every
day experience since at many occasions taking the choice of others into account is wise
and beneficial for the entire society. In fact, imitation has been recognized as an im-
portant manifestation of intelligence and social learning. For instance, in his popular
bestseller “The Wisdom of Crowds”, Surowiecki (2005) praises the superior judgment of
large groups of people over an elite few. This became evident, for example, when Google
launched their web search engine, at that time offering a superior service quality. Encour-
aged by their acquaintances, more and more users adopted Google as their primary index
to the web. Moreover, the Google search engine itself leverages the wisdom of crowds by
ranking their search results with the PageRank algorithm (Brin and Page, 1998).

The reason that herding could be rather harmful in the model studied by Bikhchandani
et al. (1992, 1998) is that each individual has unlimited observational power over the
actions taken by all predecessors. In a more realistic model, information disseminates not
perfectly so that individuals typically observe merely a small subset of their predecessors.

In this paper, we propose a generalization of the sequential learning model considered
by Bikhchandani et al. (1992, 1998). Suppose the population has size n. For each indi-
vidual i ∈ {1, . . . , n}, a set of acquaintances Γ(i) among all predecessors j < i is selected,
where each predecessor of individual i is included in Γ(i) with probability p = p(n),
0 ≤ p ≤ 1, independently of all other members. Only the actions taken by members
of Γ(i) are revealed to the individual i, all other actions remain unknown to i. Thus, the
underlying social network is a random graph according to the model of Erdős and Rényi
(1959). Setting p = 1 resembles the model of Bikhchandani et al. (1992, 1998).

Extending the result of Bikhchandani et al. (1992, 1998), we show that if p is a constant,
the probability that a false informational cascade occurs during the decision process is
constant, i.e., independent of the population size n. On the other hand, if p = p(n) is
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a function that decays with n arbitrarily slowly, the probability of a false informational
cascade tends to 0 as n tends to infinity. Informally speaking, almost all members of
fairly large, moderately linked social networks make the correct choice with probability
very close to 1, which is in accordance with our every day experience.

1.1. Model of Sequential Observational Learning in Networks

We consider the following framework of sequential learning in social networks that nat-
urally generalizes the setting of Bikhchandani et al. (1992, 1998). There are n individuals
(or equivalently, agents or decision-makers in the following), V = {v1, . . . , vn}, facing a
once-in-a-lifetime decision between two alternatives a and b. Decisions are made sequen-
tially in the order of the labeling of V . One of the two choices is objectively superior, but
which one that is remains unknown to all individuals throughout. Let θ ∈ {a, b} denote
that superior choice. The a-priori probabilities of being the superior choice are

P [θ = a] = P [θ = b] =
1

2
.

Each agent vi ∈ V makes his choice ch(vi) ∈ {a, b} based on two sources of information:
a private signal s(vi) ∈ {a, b} and public information. The private signal s(vi) is only
observed by the individual vi. All private signals are identically and independently dis-
tributed, satisfying P [s(vi) = θ] = α. That is, α is the probability that a private signal
correctly recommends the superior choice. The value of α remains unchanged throughout
the entire process and is known to all agents. We assume that 1/2 < α < 1, excluding
the trivial case α = 1.

The actions {ch(vi) | 1 ≤ i ≤ n} are public information, but an individual vi can
only observe the actions of a subset Γi ⊆ Vi−1 = {v1, . . . , vi−1} of acquaintances. For
all agents vi, 2 ≤ i ≤ n, each of the possible acquaintances vj ∈ Vi−1 is included with
probability 0 ≤ p = p(n) ≤ 1 into Γi, independently of all other elements in Vi−1. Equiva-
lently, the underlying social network can be represented as a labeled, undirected random
graph G = Gn,p on the vertex set V , where each possible edge is included with proba-
bility p, independently of all other edges. Then the set of acquaintances Γi of agent vi

that already made a decision is given by ΓG(vi)∩ Vi−1, where ΓG(vi) denotes the neigh-
borhood of vi in G. It is easily seen that both representations are equivalent (Bollobás,
2001; Janson,  Luczak, and Rucinski, 2000) and yield a random graph in the classical
model of Erdős and Rényi (1959). We shall assume throughout this paper that the social
network is exogenously determined before all decisions take place and represented in form
of a random graph G = Gn,p.

Various models of social networks were proposed in the literature, for instance by
Barabási and Albert (1999). The classical random graph model of Erdős and Rényi
is analytically well understood and, despite its idealistic assumptions, powerful enough
to explain essential features of sequential social learning well. Moreover, it naturally
generalizes the model proposed by Bikhchandani et al. (1992, 1998), which is captured
in the case p = 1.
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1.2. Main Result

All agents employ the following deterministic rule for making decisions, which is a
slight variation of the decision rule in Bikhchandani et al. (1992, 1998).
Definition 1 (Decision rule) Suppose individual vi has received the private signal s(vi),
and, among his acquaintances Γ(i), ma chose option a and mb chose option b. Then the
decision ch(vi) of agent vi is given by

ch(vi) =






a if ma − mb ≥ 2 ,

b if mb − ma ≥ 2 ,

s(vi) otherwise .

In Sect. 2 we show that on a complete graph this strategy is locally optimal for each
individual assuming that the actions of acquaintances are given in an aggregated form,
that is, agent vi merely observes how many times either of the options a and b was chosen
before (see Lemma 1). We will also discuss how this decision rule relates to the decision
rule used by Bikhchandani et al. (1992, 1998).

For any two sequences an and bn, n ∈ N, we write an ≪ bn if

lim
n→∞

an

bn
= 0 .

Then our result reads as follows.
Theorem 1 Suppose a social network with n agents V = {v1, . . . , vn} is given as a
random graph G = Gn,p with vertex set V and edge probability p = p(n). Assume that
private signals are correct with probability 1/2 < α < 1 and each agent applies the
decision rule in Definition 1. Let cα,p(n) be a random variable counting the number of
agents that make the correct choice.

(i) If n−1 ≪ p ≪ 1, for all γ > 0 we have

lim
n→∞

P [cα,p(n) ≥ (1 − γ)n] = 1 . (1)

(ii) If 0 ≤ p ≤ 1 is a constant, then there exist constant ̺ = ̺(α, p) > 0 such that

lim
n→∞

P [cα,p(n) = 0] ≥ ̺ . (2)

In moderately linked social networks as in (i), the entire society benefits from learning.
On the other hand, if each individual has very many acquaintances on average as in (ii),
incorrect informational cascades that lead the entire population into the false decision
are quite likely. Note that if agents ignored the actions of others completely, typically a
(1 − α)-fraction of the population would make the false decision.

In very sparse random networks with p = c/n for some constant c > 0, no significant
herding will arise since those networks typically contain γn isolated vertices for some
constant γ = γ(c) > 0 (Bollobás, 2001; Janson et al., 2000). These agents make their
decision independently of all other agents and, hence, we expect that both, the group of
agents choosing a as well as the group of agents choosing b, contain a linear fraction of
the whole population.

The crucial difference between the model of Bikhchandani et al. (1992, 1998), which
assumes that the underlying graph of the social network is complete, and our model is
that in the former the probability of a false informational cascade primarily depends on
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the decision of very few agents at the beginning of the process. For instance, with constant
probability the first three agents make the false decision, no matter which decision rule
they apply. Since in a complete graph each subsequent agent observes these actions, the
entire population will be tricked into the false decision. In contrast to that, information
accumulates locally in the beginning if the underlying network is sparse as in (i). During
a relatively long phase of the process, individuals make an independent decision because
none of their acquaintances has decided yet. Hence, after that phase typically a fraction
very close to α > 1/2 of these agents made the correct choice. In later phases of the
process, agents observe this bias among their acquaintances and, trusting the majority,
make the correct decision, thereby increasing the bias even more. In the end, almost all
agents are on the correct side.

1.3. Related Results

As already mentioned, Bikhchandani et al. (1992, 1998) consider the case when the
social network is a complete graph; here informational cascades arise quickly, and it is
quite likely that they are false. They consider a decision rule that is slightly different
from the one in Definition 1. As we will show in Sect. 2, although both rules are locally
optimal, false informational cascades are more likely with the rule in Bikhchandani et al.
(1992, 1998).

Models of observational learning processes were investigated in several papers. Baner-
jee (1992) analyzes a model of sequential decision making that provokes herding behavior;
as before, each decision-maker can observe the actions taken by all of his predecessors.
In the model of Çelen and Kariv (2004), decision-makers can only observe the action of
their immediate predecessor. Banerjee and Fudenberg (2004) consider the model in which
each agent can observe the actions of a sample of his predecessors. This is comparable
to our model with an underlying random network Gn,p. However, their model of making
decisions is different; at each point in time, a proportion of the entire population leaves
and is replaced by newcomers, who simultaneously make their decision. Similarly to our
result, Banerjee and Fudenberg (2004) show that, under certain assumptions, informa-
tional cascade are correct in the long run. In the learning process studied by Gale and
Kariv (2003), agents make decisions simultaneously rather than in a sequential order, but
they may repeatedly revise their choice. Watts (2002) studies random social networks, in
which agents can either adopt or not. Starting with no adopters, in each round all agents
update their state according to some rule depending on the state of their neighbors. In
this model, the emergence of global informational cascades also depends on the density
of the underlying random network.

1.4. Organization of the Paper

The paper is organized as follows. In Sect. 2, we discuss the agents’ local decision rule.
In Sect. 3 we present the proof of Theorem 1(i). An outline of this proof is contained in
Sect. 3.1, where we also state a series of technical lemmas, which are proved in Sect. 3.2.
In Sect. 4 we give the proof of Theorem 1(ii). We conclude with experimental results in
Sect. 5.
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2. Agents’ Local Decision Rule

Before we begin with the proof of the Main Theorem, we shall first show that the
decision rule stated in Definition 1 is indeed the locally optimal decision strategy for
each agent vi under the assumption that all agents act Bayes rational.
Lemma 1 Let the social network be given as the complete graph on n vertices. Suppose
that previous actions are observable in an aggregated form, and all individuals behave
Bayes rational. Then by acting according to the rule in Definition 1 each agent maximizes
the a-posteriori probability of making the correct decision.

Proof. We consider a Markov chain with state variable

∆j =
∣∣∣
{
v

∣∣ ch(v) = θ, v ∈ Vj

}∣∣∣ −
∣∣∣
{
v

∣∣ ch(v) 6= θ, v ∈ Vj

}∣∣∣ , (3)

the difference after j individuals between correct and incorrect decision-makers, assuming
that all individuals follow the decision rule in Definition 1. From the decision rule, for
all j ≥ 0 we have the transition probabilities

P

[
∆j+1 = ∆j + 1

∣∣ ∆j ≥ 2
]

= P

[
∆j+1 = ∆j − 1

∣∣ ∆j ≤ −2
]

= 1 , (4)

and

P

[
∆j+1 = ∆j + 1

∣∣∣ |∆j | ≤ 1
]

= α , (5)

P

[
∆j+1 = ∆j − 1

∣∣∣ |∆j | ≤ 1
]

= 1 − α . (6)

For all j ≥ 1 and −j ≤ i ≤ j, define

fj,i = P

[
∆j = i

]
.

The probabilities fj,i will be useful later to prove the local optimality of the decision
rule. From the transition probabilities (4)-(6), we will first compute fj,i explicitly. Since
the first two individuals always decide independently, we have

f1,1 = α, f1,−1 = 1 − α, f2,2 = α2, f2,0 = 2α(1 − α) and f2,−2 = (1 − α)2 . (7)

In order to have ∆2j+2 = 0, we must have ∆2j = 0 and that the actions of the two
individuals in Vj+2 \ Vj are a and b in any order. Thus, we have

f2j+2,0 = 2α(1 − α) f2j,0 ,

and because of f2,0 = 2α(1 − α) we conclude

f2j,0 = 2jαj(1 − α)j . (8)

By similar inductive reasoning with (7) as the base case and using (4)-(6) for the inductive
step, we obtain

f2j−1,1 = 2j−1αj(1 − α)j−1 , f2j−1,−1 = 2j−1αj−1(1 − α)j ,

f2j,2 = 2j−1αj+1(1 − α)j−1 , f2j,−2 = 2j−1αj−1(1 − α)j+1 .

Therefore, we have
f2j−1,1

f2j−1,1 + f2j−1,−1
= α ∀ j ≥ 1 , (9)
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and
f2j,2

f2j,2 + f2j,−2
=

α2

α2 + (1 − α)2
∀ j ≥ 1 . (10)

Because of (4), we have for j ≥ 2 and 3 ≤ i ≤ j + 1

fj+1,i

fj+1,i + fj+1,−i
=

fj,i−1

fj,i−1 + fj,−(i−1)
, (11)

and thus, inductively by (10) and (11), for all j ≥ 2 and 2 ≤ i ≤ j we have

fj,i

fj,i + fj,−i
=






α2

α2 + (1 − α)2
if j ≡ i mod 2 ,

0 otherwise .

(12)

We will now prove that the decision rule in Definition 1 yields the locally optimal decision
for each individual vj , 1 ≤ j ≤ n. For v1, having no observations, the optimal decision is
to follow his private signal, since α > 1/2. Suppose now that the individual vj+1 has to
make his decision, observing ma individuals that made the choice a and mb that made
the choice b. By the induction hypothesis, we can assume that all his j predecessors
followed the rule in Definition 1. We distinguish the cases j even and j odd.
j even: Note that |ma−mb| is always even. If ma = mb, then vj+1 cannot learn anything

about the correct decision by the observation of his predecessors. Since his signal
s(vj+1) is correct with α > 1/2, his optimal choice is s(vj+1) in that case. On the
other hand, if |ma − mb| ≥ 2, we have

P
[
θ = a

∣∣ ma − mb = 2i
]

=
P [∆j = 2i]

P [∆j = 2i] + P [∆j = −2i]
=

fj,2i

fj,2i + fj,−2i
,

and also

P
[
θ = b

∣∣ mb − ma = 2i
]

=
P [∆j = 2i]

P [∆j = 2i] + P [∆j = −2i]
=

fj,2i

fj,2i + fj,−2i
.

Because of (12), decision rule in Definition 1 gives individual vj+1 a probability of
making the correct choice of

P
[
ch(vj+1) = θ

∣∣ |ma − mb| ≥ 2
]

=
α2

α2 + (1 − α)2
> α for all

1

2
< α < 1 . (13)

Since this yields a confidence strictly larger than the confidence α of his private signal,
the decision rule in Definition 1 is indeed locally optimal.

j odd: |ma − mb| is always odd, and ma = mb can never occur. If |ma − mb| = 1, by
analogous reasoning as in the case of j even above, we obtain from (9)

P
[
ch(vj+1) = θ

∣∣ |ma − mb| = 1
]

= α for all
1

2
< α < 1 .

Thus, following his private signal as proposed by Definition 1 is locally optimal, since
following the thin majority would give agent vj+1 only the same probability of making
the correct decision. For |ma − mb| ≥ 3, (12) yields

P
[
ch(vj+1) = θ

∣∣ |ma − mb| ≥ 3
]

=
α2

α2 + (1 − α)2
> α for all

1

2
< α < 1 ,

and indeed it is optimal for agent vj+1 to follow the majority as proposed by Defini-
tion 1 regardless of his own signal. Thus, we obtain that the decision rule in Definition 1
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is also locally optimal in the case of j odd, which completes the proof of the inductive
step.

2

As mentioned above, Bikhchandani et al. (1992, 1998) use a slightly different version
of the individuals’ local decision rule than in Definition 1. Instead, they consider the
following version:
Definition 2 (Local decision rule in Bikhchandani et al. (1992, 1998)) Suppose
individual vi has received the private signal s(vi), and, among his acquaintances Γ(i),
ma chose option a and mb chose option b. Let z be drawn uniformly at random from {a, b}.
Then

ch(vi) =






a if ma − mb ≥ 2 or (ma − mb = 1) ∧ (s(vi) = a) ,

b if ma − mb ≤ −2 or (ma − mb = −1) ∧ (s(vi) = b) ,

z if (ma − mb = −1) ∧ (s(vi) = a)

or (ma − mb = 1) ∧ (s(vi) = b) ,

s(vi) if mb − ma = 0 .

As the following lemma shows, this decision rule yields inferior global behavior on the
complete network G = Kn compared to the decision rule given in Definition 1.
Lemma 2 Suppose the network of acquaintanceships is G = Kn. Then the probabilities
of ending up in a correct cascade are given by

f0 =
α2

1 − 2α + 2α2
and g0 =

α(1 + α)

2(1 − α + α2)
,

if all individuals employ the decision rule in Definition 1 and Definition 2, respectively.
For all 1/2 < α < 1, we have f0 > g0.

Proof. We consider a Markov chain where the state variable ∆ is the difference between
correct and incorrect decision-makers. The decision rules in Definitions 1 and 2 yield
transition probabilities as given in Fig. 1.

The probability of entering a correct informational cascade is the probability of being
absorbed in state ∆ ≥ 2 when starting in state ∆ = 0. Under the decision rule in
Definition 1, for −1 ≤ i ≤ 1 let fi be the probability of eventually being absorbed in
state ∆ ≥ 2 when starting in state ∆ = i. Analogously, let gi be the corresponding
probabilities under the decision rule in Definition 2. We obtain the systems of linear
equations

f1 = α + (1 − α)f0 , f0 = αf1 + (1 − α)f−1 , f−1 = αf0 ,

and

g1 = (1 + α)/2 + (1 − α)g0/2 , g0 = αg1 + (1 − α)g−1 , g−1 = αg0/2 ,

which yield

f0 =
α2

1 − 2α + 2α2
and g0 =

α(1 + α)

2(1 − α + α2)
,

and it is straightforward to check that f0 > g0 for all 1/2 < α < 1.
2
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≤ −2 −1 0 1 ≥ 21

1 − α 1 − α 1 − α

α α α

≤ −2

1

−1 0 1 ≥ 2 11

1 − α
2 1 − α 1−α

2

α
2 α 1+α

2

Fig. 1. Markov chains for the difference ∆ of correct and incorrect decision-makers under the decision
rules in Definition 1 (upper part) and in Definition 2 (lower part).

The alternative decision rule in Definition 2 is a locally optimal strategy for the in-
dividuals as well. The only difference between Definition 1 and Definition 2 is the coin
flipping if an individual vi observes a thin majority |ma − mb| = 1 in conjunction with
s(vi) contradicting this majority vote. From (9) we see that such a thin majority vote
has the same significance α to be correct, exactly the same as vi’s private signal. If the
majority vote and s(vi) do not coincide, both choices a and b have therefore the same
a-posteriori probability to be correct. Thus, flipping a coin is a locally optimal decision,
as well as following the private signal as suggested by the rule in Definition 1. The reason
that Definition 1 yields better global behavior on G = Kn (as shown in Lemma 2) is that
if individuals follow their private signals when |ma − mb| = 1 instead of flipping a coin,
a greater information externality is provided, benefiting subsequent agents.

3. Proof of Theorem 1(i)

We shall now proceed with the proof of the main Theorem. Suppose n−1 ≪ p ≤ 1 is
given as in Theorem 1, and consider a random graph G = Gn,p on the vertex set V with
edge set E. For any set V ′ ⊆ V , let E(V ′) denote the set of edges induced by V ′ in G.

For any j, 1 ≤ j ≤ n, let Vj = {v1, . . . , vj} denote the set of the first j agents. Recall
that θ ∈ {a, b} denotes the objectively superior choice between a and b. For any set of
agents V ′ ⊆ V , let

C(V ′) = {v ∈ V ′ : ch(v) = θ}

be the subset of agents in V ′ who made the correct decision. We denote the cardinality
of C(V ′) by c(V ′). Let C̄(V ′) = V ′ \ C(V ′), and c̄(V ′) = |C̄(V ′)|.

The binomial distribution with parameters n and p is denoted by Bin(n, p). In the
following, if we refer to the “h(x)-th agent” for some real valued function h(·), we shall
always assume an implicit use of floor functions; for our asymptotic considerations the
effect of rounding to the next integer is not vital.
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3.1. Outline of the Proof

The proof of Theorem 1(i) is based on a series of lemmas that we state here. The
proofs are deferred to Sect. 3.2. We will distinguish three phases: Phase I comprising
agents VI = {v1, . . . , vk0

}, Phase II comprising agents VII = {vk0+1, . . . , vk1
}, and finally

Phase III comprising agents VIII = {vk1+1, . . . , vn}; we will specify 1 ≤ k0 < k1 ≤ n as
functions of n below.

In Phase I, the phase of the early adopters, most decision-makers don’t observe more
than the decision of one neighbor, and will follow their private signal according to the
decision rule in Definition 1. Therefore, almost all agents in VI make their decisions based
solely on their private signal, which yields approximately an α-fraction of individuals in
VI who opted for θ. More specifically, we can establish the following lemma.
Lemma 3 Let ω = ω(n) be a sequence satisfying 1 ≪ ω ≪ n. Let 1/2 < α < 1,
ω/n < p ≤ 1/ω and k0 = p−3/4 be given. Then we have

P

[
c(Vk0

) ≥
(

1 − p1/4
)

αk0

]
= 1 − o(1) .

Note that if 0 < p ≤ 1 is a constant independent of n, this statement does not
hold; there is no k0 ≥ 1 such that the number of correctly decided agents in Vk0

is
roughly k0 with probability 1−o(1). That is exactly what makes the situation in part (ii)
of Theorem 1 different.

In Phase II, more and more agents face decisions of their acquaintances. An important
observation is that the subsequent agent vj+1 makes the correct choice with probability
at least α if vj+1 obeys the decision rule in Definition 1 and “almost” an α-fraction of
his predecessors are correct.
Lemma 4 For every 1/2 < α < 1 there exists an ε > 0 such that for all i > k ≥ 1 we
have

P
[
ch(vi) = θ

∣∣ c(Vk) ≥ (1 − ε)αk ∧ Γi ⊆ Vk

]
≥ α .

That is, following the majority and using the private signal only to break ties does
not decrease the chances of any agent even if his acquaintances are randomly selected,
provided that there is a bias among all predecessors towards the right direction. This
enables us to show that, throughout the first stage, a bias of ᾱ > 1/2 remains stable in
the group of decided agents, and also holds at the end of the second phase.
Lemma 5 Let ω = ω(n) be a sequence satisfying 1 ≪ ω ≪ n. Let 1/2 < α < 1,
0 < p ≤ 1/ω and k0 = p−3/4 and k1 = p−1ω1/8 be given. Then we have

P

[
c(Vk1

) ≥
(
1 − p1/10

)
αk1

∣∣∣ c(Vk0
) ≥

(
1 − p1/4

)
αk0

]
= 1 − o(1) .

At the beginning of Phase III (i.e. after agent k1 = p−1ω1/8), on average every agent
vi has E [|Γi|] ≥ pk1 ≫ 1 neighbors that already decided. With high probability vi

disregards his private signal and follows the majority vote among its acquaintances,
thereby making the correct choice. This means that almost all subsequent agents are
correct, if the majority before them was correct. Due to many dependencies between
agents, we have to consider increasing groups of agents, and prove the following Lemma.
Lemma 6 Let ω = ω(n) be a sequence satisfying 1 ≪ ω ≪ n, and let 1

2 < ᾱ ≤ 1,

ω/n ≤ p ≤ 1/ω and k ≥ k1 = p−1ω1/8. Then we have

P

[
c(V2k \ Vk) ≥

(
1 − ω−1/5

)
k

∣∣∣ c(Vk) ≥ ᾱk
]
≥ 1 − e−kp .
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This Lemma will allow us to prove that with high probability almost all agents make
the correct choice in Phase III.
Lemma 7 Let ω = ω(n) be a sequence satisfying 1 ≪ ω ≪ n. Let 1/2 < α < 1,
ω/n ≤ p ≤ 1/ω (i.e. 1/n ≪ p ≪ 1) and k1 = p−1ω1/8 be given. Then we have

P

[
c(Vn) ≥

(
1 − ω−1/6

)
n

∣∣∣ c(Vk1
) ≥

(
1 − p1/10

)
αk1

]
= 1 − o(1) .

Combining Lemmas 3, 5 and 7, Theorem 1 follows immediately.

Proof of Theorem 1 (i). We consider the following three events

E1 : c(Vk0
) ≥

(
1 − p1/4

)
αk0 ,

E2 : c(Vk1
) ≥

(
1 − p1/10

)
αk1 ,

E3 : c(Vn) ≥
(
1 − ω−1/6

)
n .

As P
[
E3

]
≤ P

[
E3

∣∣ E2

]
+ P

[
E2

∣∣ E1

]
+ P

[
E1

]
, we conclude P

[
E3

]
= o(1) by Lem-

mas 3, 5 and 7. Since for n sufficiently large, ω−1/6 < γ for every given constant γ > 0,
the theorem follows.

2

What makes the crucial difference between parts (i) and (ii) of Theorem 1 is that if p
is a constant, for all j ≥ 1 the condition c(Vj) ≥ ᾱj in Lemmas 4 and 6 only holds with
probability bounded away from 1. Then it is quite likely that agents experience a bias
towards the false direction among their acquaintances, and the same herding behavior
as before evokes a false informational cascade.

3.2. Proofs of Auxiliary Lemmas

Here we present the proofs of the Lemmas that were stated in the previous section.
We will frequently make use of the following Chernoff tail bounds. The reader is referred
to standard textbooks (Bollobás, 2001; Janson et al., 2000) for proofs.
Lemma 8 Let X1, . . . , Xn be independent Bernoulli trials with P [Xi = 1] = pi. Let
X =

∑n
i=1 Xi and µ = E [X ] =

∑n
i=1 pi. Then we have

(a) P [X ≥ (1 + δ)µ] ≤ e−µδ2/3 for all 0 < δ ≤ 1 ,

(b) P [X ≤ (1 − δ)µ] ≤ e−µδ2/2 for all 0 < δ ≤ 1 ,

(c) P [X ≥ t] ≤ e−t for all t ≥ 7µ , and

(d) P [X ≥ µ + t] ≤ e−t2/(2µ+2t/3) for all t ≥ 0 .

We first give the proof of Lemma 3, which makes an assertion on the number of correct
decision-makers in Phase I.

Proof of Lemma 3. For all 2 ≤ i < k0, we have

P [|Γi+1| ≥ 2] =

i∑

j=2

(
i

j

)
pj(1 − p)j ≤

i∑

j=2

(ip)j ≤ k2
0p

2
∞∑

j=0

(k0p)j ≤
k2
0p

2

1 − k0p
. (14)

11



Let A = {vi : |Γi| ≤ 1, 1 ≤ i ≤ k0}, and B = Vk0
\ A its complement. Note that all

individuals in the set A make their decision solely based on their private signals. On the
other hand, individuals in B might have observed an imbalance |∆| ≥ 2 in the actions
of their neighbors and chosen to follow the majority, disregarding their private signals.
But because of (14) and the definition of k0 we have

E [|B|] =

k0−1∑

i=1

P [|Γi+1| ≥ 2] ≤
k3
0p

2

1 − k0p
= k0

3p2 · (1 + o(1)) = p−1/4 · (1 + o(1)) .

Let E denote the event that |B| < p−3/8. As p−1 → ∞ we can apply Lemma 8 (c) and
deduce that

P
[
E

]
= P

[
|B| ≥ p−3/8

]
≤ e−p−3/8

= o(1) .

Since by the decision rule in Definition 1 all individuals vi ∈ A follow their private signals,
we have

E [c(A) | E ] = E
[
α|A|

∣∣ E
]

= E
[
α(k0 − |B|)

∣∣ E
]
≥ α

(
k0 − p−3/8

)
= αk0

(
1 − p3/8

)
.

For n sufficiently large, we have

1 − p1/4

1 − p3/8
≤ 1 −

1

2
p1/4 ,

and hence

(
1 − p1/4

)
αk0 =

1 − p1/4

1 − p3/8
αk0(1 − p3/8) ≤

(
1 −

1

2
p1/4

)
E [c(A) | E ] .

Therefore, using the Chernoff bound from Lemma 8 (b), we obtain

P

[
c(A) ≤

(
1 − p1/4

)
αk0

∣∣∣ E
]
≤ P

[
c(A) ≤

(
1 −

1

2
p1/4

)
E [c(A) | E ]

∣∣∣ E
]

≤ e−E[c(A) | E]p1/2/8 ≤ e−αk0

(
1−p3/8

)
p1/2/8 = o(1) .

As A ⊆ Vk0
, we conclude

P

[
c(Vk0

) ≥
(
1 − p1/4

)
αk0

]
≥ P

[
c(A) ≥

(
1 − p1/4

)
αk0

∣∣∣ E
]
· P [E ] ≥ 1 − o(1) .

2

We continue with the proof of Lemma 4.

Proof of Lemma 4. Let c(Vk) = ᾱk for some constant ᾱ > 1/2. Furthermore, let

∆ = c(Vk ∩ Γi) − c̄(Vk ∩ Γi)

be the difference in the number of neighbors of agent i in C(Vk) and in C(Vk), and let
pj = P [∆ = j] denote the probability that this difference equals exactly j.

Let ℓ1 = min{ᾱk, (1 − ᾱ)k + j} and ℓ2 = (1 − ᾱ)k. Note that ℓ2 ≤ ℓ1 since ᾱ > 1/2.
Since ∆ = j if and only if c(Vk ∩ Γi) = s and c̄(Vk ∩ Γi) = s − j for some s ≥ j, for all
j ≥ 2 we have

pj =

ℓ1∑

s=j

(
ᾱk

s

)(
(1 − ᾱ)k

s − j

)
p2s−j(1 − p)k−(2s−j)

12



and similarly

p−j =

ℓ2∑

s=j

(
(1 − ᾱ)k

s

)(
ᾱk

s − j

)
p2s−j(1 − p)k−(2s−j) .

For r ≥ s ≥ 1, let rs = r (r − 1) . . . (r − s + 1) be the falling factorial. For all j ≥ 1 and
j ≤ s ≤ ℓ2, we have

(
ᾱk

s

)(
(1 − ᾱ)k

s − j

)
=

(ᾱk)s((1 − ᾱ)k)s−j

s!(s − j)!

=
(ᾱk)s−j((1 − ᾱ)k)s

s!(s − j)!
·

j−1∏

t=0

ᾱk − s + j − t

(1 − ᾱ)k − s + j − t

≥

(
(1 − ᾱ)k

s

)(
ᾱk

s − j

)
·

(
ᾱ

1 − ᾱ

)j

.

Therefore we have

pj ≥

(
ᾱ

1 − ᾱ

)2

p−j ∀ j ≥ 2 ,

and

P [∆ ≥ 2]≥

(
ᾱ

1 − ᾱ

)2

P [∆ ≤ −2]

=

(
ᾱ

1 − ᾱ

)2 (
1 − P [−1 ≤ ∆ ≤ 1] − P [∆ ≥ 2]

)
.

Thus, solving for P [∆ ≥ 2], we have

P [∆ ≥ 2] ≥
1

1 +
(

1−ᾱ
ᾱ

)2

(
1 − P [−1 ≤ ∆ ≤ 1]

)
. (15)

Since α > 1/2 and f(α) = 1−α
α is monotonically decreasing with 0 < f(α) < 1 in

1/2 < α < 1, there exists ε > 0 such that (1 − ε)α > 1/2 and f(ᾱ)2 ≤ f(α) for all
1 ≥ ᾱ ≥ (1 − ε)α. Hence,

1

1 +
(

1−ᾱ
ᾱ

)2 ≥
1

1 +
(

1−α
α

) = α ∀ 1 ≥ ᾱ ≥ (1 − ε)α > 1/2 . (16)

Because of the decision rule given in Definition 1, using (15) and (16) we conclude

P [ch(vi) = θ] = αP [−1 ≤ ∆ ≤ 1] + P [∆ ≥ 2] ≥ α

for all ᾱ ≥ (1 − ε)α.
2

Using Lemma 4, we now present the proof of Lemma 5, which asserts that roughly an
α-fraction of correct decision-makers is maintained throughout Phase II.

Proof of Lemma 5. Let C be the event that c(Vk0
) ≥

(
1 − p1/4

)
αk0 is satisfied. We

consider groups Wi of m = p−1/4 agents. We have ℓ = (k1 − k0)/m ≤ k1/m ≤ p−3/4ω1/8

13



groups between individuals k0 and k1. Let Ei be the event that there is at most one
individual in Wi that has a neighbor in Wi, i.e. |E(Wi)| ≤ 1. Let E = E1 ∧ · · ·∧ Eℓ. Since
m2p = p1/2 = o(1), we have for n sufficiently large

P
[
E i

]
≤

(m
2 )∑

j=2

((
m
2

)

j

)
pj ≤

(m
2 )∑

j=2

m2jpj ≤ m4p2
∞∑

j=0

m2jpj ≤
m4p2

1 − m2p
≤ 2p ,

and

P
[
E

]
≤

ℓ∑

i=1

P
[
E i

]
≤ ℓ · 2p ≤ 2 p1/4ω1/8 ≤ 2 ω−1/8 . (17)

We have

P

[
c(Vk1

) <
(
1 − p1/10

)
αk1

∣∣∣ C
]
≤ P

[
c(Vk1

) <
(
1 − p1/10

)
αk1

∣∣∣ E ∧ C
]

+ P
[
E

]
,

and defining Ai as the event that c(Wi) ≥ α
(
1 − p1/10

)
m,

P

[
c(Vk1

) <
(
1 − p1/10

)
αk1

∣∣∣ E ∧ C
]

≤ P

[
c(Vk1

) <
(
1 − p1/10

)
αk1

∣∣∣∣∣

ℓ∧

i=1

Ai ∧ E ∧ C

]
+

ℓ−1∑

j=0

P

[
Aj

∣∣∣∣∣

j−1∧

i=1

Ai ∧ E ∧ C

]
.

Since A1 ∧ · · · ∧ Aℓ ∧ C implies c(Vk1
) ≥

(
1 − p1/10

)
αk1, we conclude

P

[
c(Vk1

) <
(
1 − p1/10

)
αk1

∣∣∣ C
]
≤

ℓ−1∑

j=0

P
[
Aj | E ∧ A1 ∧ · · · ∧ Aj ∧ C

]
+ P

[
E

]
. (18)

Let ᾱ =
(
1−p1/10

)
α. The event E ∧A1∧· · ·∧Aj−1∧C means that before the individuals

in group Wj have to make a decision, we have

c(Vk0+(j−1)m) ≥ ᾱ(k0 + (j − 1)m) ,

and there is at most one individual wj ∈ Wj with a neighbor in Wj that made his

decision before wj . Let Ŵj = Wj \ wj and m̂ = m − 1. Lemma 4 asserts, that there is
an ε > 0 and k̄ ≥ 1 (which both depend only on α), such that for all k ≥ k̄ we have

P [ch(v) = θ] ≥ α for all v ∈ Ŵj , if p1/10 < ε. But since p ≤ 1/ω and k0 ≥ ω3/4, for n
sufficiently large we certainly have k0 ≥ k̄ and ᾱ ≥ (1 − ε)α. Hence, we have

E

[
c(Ŵj)

∣∣ E ∧ A1 ∧ · · · ∧ Aj−1 ∧ C
]
≥ α m̂ .

The Chernoff bound in Lemma 8(b) implies

P

[
c(Ŵj) ≤

(
1 −

1

2
p1/10

)
αm̂

∣∣∣ E ∧ A1 ∧ · · · ∧ Aj−1 ∧ C

]
≤ e−αm̂p1/5/8 ≤ e−αp−1/20/8 .

and hence for n sufficiently large

P

[
Aj

∣∣∣ E ∧ C ∧

j−1∧

i=1

Ai

]
= P

[
c(Wj) ≤

(
1 − p1/10

)
αm

∣∣∣ E ∧ C ∧

j−1∧

i=1

Ai

]

≤ P

[
c(Ŵj) ≤

(
1 −

1

2
p1/10

)
αm̂

∣∣∣ E ∧ C ∧

j−1∧

i=1

Ai

]
≤ e−αp−1/20/8 .
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Since ℓ ≤ p−3/4ω1/8 ≤ p−7/8, we have

ℓ∑

j=1

P

[
Aj | C ∧ E ∧

j−1∧

i=1

Ai

]
≤ ℓ e−αp−1/20/8 = o(1) , (19)

and because of (17), (18) and (19) we can conclude

P

[
c(Vk1

) ≥
(
1 − p1/10

)
αk1

∣∣∣ C
]

= 1 − o(1) .
2

In the following, we need the following technical Lemma about binomial random vari-
ables.
Lemma 9 Let p > 0, and let x ≥ 1 and y ≥ 1 with px ≥ 4c/(c − 1) and x/y ≤ c for
some c > 1. Let X ∼ Bin(x, p) and Y ∼ Bin(y, p) be independent. Then

P [X ≥ Y + 2] ≥ 1 − 2 exp(−Cpx) (20)

with C = (c−1)2

12c(c+1)2 .

Proof. Let Y ′ ∼ Bin(x/c, p) and Y ′′ ∼ Bin(βx/c, p) with β < 1. Then we have
P [X ≥ Y ′′ + 2] ≥ P [X ≥ Y ′ + 2]. From this observation we see that we may assume
that x/y = c.

Let δ = c−1
2(c+1) . We have 0 < δ < 1/2. Since

(1 − δ)px − (1 + δ)py =
px

c

(
c − 1 − (c + 1)δ

)
=

px(c − 1)

2c
≥ 2 ,

and X and Y are independent random variables, we conclude

P [X − Y ≥ 2]≥ P [X ≥ (1 − δ)px ∧ Y ≤ (1 + δ)py]

= P [X ≥ (1 − δ)px] · P [Y ≤ (1 + δ)py]

≥ 1 − P [X ≤ (1 − δ)px] − P [Y ≥ (1 + δ)py] .

Using Chernoff bounds (a) and (b) in Lemma 8, we obtain

P [X ≤ (1 − δ)px] ≤ e−pxδ2/2

and
P [Y ≥ (1 + δ)py] ≤ e−pyδ2/3 = e−pxδ2/(3c) .

Since c > 1, we conclude

P [X − Y ≥ 2] ≥ 1 − 2 e−pxδ2/(3c) .
2

We continue with the proof of Lemma 6.

Proof of Lemma 6. Let m = p−1 ≥ ω and ℓ = k/m = kp ≥ ω1/8. For all i = 0, . . . , ℓ−1,
let Wi = {vj | k + im ≤ j ≤ k + (i + 1)m}. That is, we consider ℓ groups until 2k agents
have decided. Let Ai be the indicator variable defined by

Ai =

{
1 if c(Wi) <

(
1 − ω−1/4

)
m ,

0 otherwise .

15



We define C0 as the event that c(Vk) ≥ ᾱk, and for i = 1 . . . ℓ let Ci be the event that∑i
j=1 Aj ≤ ℓω−1/4 ∧ C0. We will first show that

P
[
Ai = 1

∣∣ Ci−1

]
≤ e−ω1/3

. (21)

To prove (21), note that Ci−1 implies that

c(Vk+(i−1)m) ≥ c(Vk) +
i−1∑

j=1

c(Wj) ≥ ᾱk +
(
(i − 1) − ℓω−1/4

)
m

(
1 − ω−1/4

)
.

Using k = mℓ, we thus obtain

c(Vk+(i−1)m) ≥
(
ᾱ − ω−1/4

(
1 − ω−1/4

))
k +

(
1 − ω−1/4

)
(i − 1)m ,

from which deduce that there exists a constant α̃ > 1/2 such that for n sufficiently large,

c(Vk+(i−1)m) ≥ α̃
(
k + (i − 1)m

)
.

That is, before the first individual of group Wi decides, we have at least a fraction α̃
of correct decision-makers. When v ∈ Wi has to make his decision, we don’t know how
many of the individuals in Wi preceding v have made a correct or incorrect decision. Let
x = c(Vk+(i−1)m) ≥ α̃(k+(i−1)m) and y = c̄(Vk+(i−1)m)+|Wi|. Since |Wi| = p−1 = o(k),
we have

y ≤ (1 − α̃ + o(k))(k + (i − 1)m) .

Hence, there exists a constant c > 1 sucht that x/y ≥ c for n sufficiently large, and we
may apply Lemma 9 to obtain

P
[
ch(v) = θ

∣∣ Ci−1

]
≥ 1 − 2 e−pkC ∀ v ∈ Wi .

for some C > 0. Let

µ = E
[
c(Wi)

∣∣ Ci−1

]
≥

(
1 − 2 e−pkC

)
m ≥

(
1 − 2 e−Cω1/8

)
m . (22)

Then, for n sufficiently large, we have µ ≥ m/2 ≥ ω/2. Lemma 8 (b) implies

P

[
c(Wi) ≤

(
1 − 2ω−1/3

)
µ

∣∣∣ Ci−1

]
≤ e−2ω−2/3µ ≤ e−ω1/3

.

For n sufficiently large, (22) implies that
(
1 − 2ω−1/3

)
µ ≥

(
1 − ω−1/4

)
m, and we obtain

P
[
Ai = 1

∣∣ Ci−1

]
≤ e−ω1/3

,

which completes the proof of (21).

Suppose
∑ℓ

j=1 Aj ≥ ℓω−1/4. Consider the first ℓω−1/4 groups Wi for which Ai = 1.

For each of them, we clearly have
∑i−1

j=1 Aj ≤ ℓω−1/4 and hence (21) holds for each of
those groups. Therefore, for n sufficiently large

P




ℓ∑

j=1

Aj ≥ ℓω−1/4



 ≤

(
ℓ

ℓω−1/4

)
e−ω1/3ℓω−1/4

(n
k)≤(e n/k)k

≤
(

e ω1/4
)ℓω−1/4

e−ω1/12ℓ ≤ e−ℓ = e−kp .
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Since
∑ℓ

j=1 Aj < ℓω−1/4 implies for n sufficiently large

c(V2k \ Vk) ≥
(
1 − ω−1/4

)
ℓ ·

(
1 − ω−1/4

)
m ≥

(
1 − 2ω−1/4

)
k ≥

(
1 − ω−1/5

)
k ,

we have
P

[
c(V2k \ Vk) ≥

(
1 − ω−1/5

)
k
]
≥ 1 − e−kp .

This concludes the proof of Lemma 6.
2

Now we are ready to prove Lemma 7.

Proof of Lemma 7. We consider subphases of increasing length. Subphase j consists
of agents

Wj =
{
vs

∣∣ k12j−1 < s ≤ k12j
}

.

We will have at most log(n − k1) ≤ log n such subphases.
Let C0 be the event that the condition c(Vk1

) ≥
(
1−p1/10

)
αk1 is satisfied. Furthermore,

for j ≥ 1, define Cj as the event that C0, . . . , Cj−1 hold and c(Wj) ≥
(
1 − ω−1/5

)
k12j−1.

Inductively, since for n sufficiently large there exists a constant ᾱ > 1/2 such that Cj

implies that c(Vk12j ) ≥ ᾱk12j , we can employ Lemma 6 for each subphase. We obtain

P

[
c(Vn \ Vk1

) < (1 − ω− 1

5 )
(
n − k1

) ∣∣∣ C0

]
≤

log n∑

j=1

P

[
c(Wj) <

(
1 − ω− 1

5

)
k12j−1

∣∣∣ Cj−1

]

≤

log n∑

j=1

e−pk12j−1

= e−pk1

log n−1∑

j=0

e−pk1(2
j−1)

≤ e−pk1

∞∑

j=0

e−pk1j =
e−pk1

1 − e−pk1

= o(1) .

Since k1 ≤ nω−7/8, c(Vn \ Vk1
) ≥ (n − k1)

(
1 − ω−1/5

)
implies

c(Vn) ≥
(
1 − k1/n

)(
1 − ω−1/5

)
n ≥

(
1 − ω−1/6

)
n

for n sufficiently large. Thus, we conclude

P

[
c(Vn) ≥

(
1 − ω−1/6

)
n

∣∣∣ C0

]
= 1 − o(1) .

2

4. Proof of Theorem 1(ii)

We proceed in two phases. The first phase lasts until agent j1 for some 1 ≤ j1 ≤ n to
be specified later, and the second phase lasts from agent j1 + 1 to agent n. We certainly
have

P [c(Vn) = 0] ≥ P
[
c(Vn \ Vj1 ) = 0

∣∣ c(Vj1) = 0
]
· P [c(Vj1 ) = 0] . (23)

The probability that all agents in Vj1 make the incorrect decision is at least

P [c(Vj1) = 0] ≥ (1 − α)j1 . (24)
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Note that this value is a constant not depending on n if j1 is a constant not depending
on n.

Since the event c(Vn \Vj1) ≥ 1, conditioned on c(Vj1) = 0, can only hold if there exists
a j ≥ j1 such that ch(vj+1) = θ ∧ c(Vj) = 0, we have

P
[
c(Vn \ Vj1 ) ≥ 1

∣∣ c(Vj1 ) = 0
]
≤

∑

j≥j1

P
[
ch(vj+1) = θ

∣∣ c(Vj) = 0
]

.

As P [ch(vj+1) = θ | c(Vj) = 0] is the probability that vj+1 has at most one neighbor in
Vj and has a correct private signal, we deduce

P
[
c(Vn \ Vj1 ) ≥ 1

∣∣ c(Vj1 ) = 0
]
≤

n∑

j=j1

α ·
(
(1 − p)j + j(1 − p)j−1

)

≤

n∑

j=j1

α ·
(
(1 − p)j−1 + j(1 − p)j−1

)

≤ α(1 − p)j1−1
∞∑

j=0

(
(1 − p)j + (j + j1)(1 − p)j

)

= α(1 − p)j1−1
( ∞∑

j=0

j1(1 − p)j +

∞∑

j=1

j(1 − p)j−1
)

.

As
∑

j≥0 qj = 1/(1 − q) and
∑

j≥1 jqj−1 = 1/(1 − q)2 for any 0 < q < 1, we have

P
[
c(Vn \ Vj1) ≥ 1

∣∣ c(Vj1) = 0
]
≤ α(1 − p)j1−1

(
j1
p

+
1

p2

)
. (25)

Since (25) becomes arbitrarily small for j1 → ∞, there exists a constant j1 = j1(p, α)
such that P

[
c(Vn \ Vj1) = 0

∣∣ c(Vj1) = 0
]
≥ 1/2. Hence, with (23) and (24) we conclude

that P [c(Vn) = 0] ≥ (1 − α)j1/2, completing the proof.

5. Numerical Experiments

The statements in Theorem 1 are asymptotic, asserting the emergence of informational
cascades in the limit n → ∞. As our numerical experiments show, these phenomena can
be observed even with moderately small populations.

We conducted numerical simulations with varying population size n and edge proba-
bility p = p(n). For each value of n and p, we sampled N = 2000 instances of random
graphs G = Gn,p and of private signals s(vi), vi ∈ V (G). The sequential decision process
was evaluated on each of those instances following the decision rule in Definition 1. We
identified an informational cascade in such an experiment if at least 95% of all agents
opted for the same choice. We computed the relative frequency of informational cascades
among the N samples for each value of n and p.

We ran the simulation for α = 0.75, n ∈ {100 · i : 1 ≤ i ≤ 20}, and three distinct
sequences p. The results are plotted in Fig. 2. The solid and the dotted line represent
the relative frequencies of correct and false cascades, respectively, for constant p = 0.5.
In accordance with Theorem 1(ii), both events occur with constant frequency indepen-
dent of the population size. The dashed and the dash-dotted line represent the relative
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Fig. 2. Simulation results for α = 0.75. The plot shows the relative frequencies of correct cascades for
different values of the edge probability p as a function of n: p = 0.5 (solid line), p = 1/ log n (dashed),
and p = n−1/2 (dash-dotted). The dotted line is the relative frequency of incorrect cascades for p = 0.5.

frequencies of correct cascades for p = 1/ log n and p = n−1/2, respectively. Confirming
Theorem 1(i) those plots approach 1 as n grows.
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