Adaptive Arrival Price

Julian Lorenz (ETH Zurich, Switzerland)

Robert Almgren (Adjunct Professor, New York University)
Outline

- Evolution of algorithmic trading
- “Classic” arrival price algorithms
- Price adaptive algorithms
 - Single-update and multi-update strategies
 - Dynamic programming
 - Improved shortfall statistics and efficient frontiers
- Extensions
 - Bayesian adaptive trading with price trend
Electronic/Algorithmic Trading

- Use computers to execute orders
- Agency trading
 - Executing orders for clients
 - Investment decision is made
- Large and increasing fraction of total order flow
 - 92% of hedge funds and
 11% of all trades, 17% by 2007 (Tabb Group)
 - Expected 50% of traded volume by 2010 (The Economist, ‘07)
Evolution of Algorithmic Trading

Use computers to execute orders (agency trading)

1. VWAP
 - Automatization of routine trading tasks

2. Arrival Price
 - Quantitative modeling and optimization
 - Market impact, volatility, alpha, etc

3. Adaptivity
 - Execution trajectory responds to market behavior in a variety of ways
 - How to do this optimally?
VWAP

- Easy to understand and implement
 - “Spread trades out over time”
- Criticism
 - For large trades in illiquid securities, VWAP essentially reflects trade itself and provides little incentive for low-cost execution
 - Artificial: does not correspond to any investment goal
Arrival Price

Benchmark: Pre-trade (decision) price

If you could execute entire order instantly at this price, you would

Why trade slowly?
- Reduce market impact

Why trade rapidly?
- Minimize risk
- Anticipated drift

- “Trader‘s Dilemma“

- Control statistical properties of shortfall
 - Risk-Reward tradeoff
Arrival Price: Efficient Strategies

Mean-Variance (Markowitz optimality): Strategies that minimize

- E for fixed V,
- V for fixed E, or
- $E + \lambda V$ for risk aversion parameter λ

1. Minimal variance
2. Minimal expected cost

Equivalent formulations!
Arrival Price: Almgren/Chriss Trajectories

[Almgren, Chriss ’00]: **Static trajectories** specified at \(t=0 \)

- Efficient trajectories given by

\[
x(t) = \frac{\sinh(\kappa(T - t))}{\sinh(\kappa T)} X
\]

\(x(t) = \) stock holding at time \(t \)

\(T = \) time horizon

\(X = \) initial shares

Urgency \(\kappa \geq 0 \) controls curvature
Adaptivity

Intuitively, adaptivity makes a lot of sense

1. Adapt to varying volume and volatility
 - trade more when liquidity is present
 - trade less when volatility risk is lower

2. Adapt to price movement: “scaling”
 - trade faster or slower when price move is favorable?
Scaling in response to price motions

Common wisdom: Depending on asset price process

- Mean-reversion \(\implies\) aggressive in the money (AIM)
- Momentum \(\implies\) passive in the money (PIM)
- Pure random walk \(\implies\) no response

[Almgren, L.]: AIM improves mean-variance tradeoff, especially

- for nonzero risk aversion (middle of frontier)
- and large portfolio sizes

1. **Single-Update**: [Algorithmic Trading III, Spring 2007]
 - Adapt strategy exactly once during trading

2. **Multi-Update**: [In preparation]
 - Any desired degree of precision
Intuition behind AIM for Arrival Price

- Introduce **intertemporal anti-correlation** between
 - investment gains/losses in first part of execution, and
 - trading costs (market impact) in second part of execution
- If make money in first part, spend parts on higher impact
- Higher impact = trade faster (i.e. reduces market risk)
- Trade this volatility reduction for expected cost reduction
 (mean-variance tradeoff!)
- Caveat: “Cap winners, let losers run” is deadly if real price process has momentum
1. Single-Update

[Almgren, L. 2007]

- Follow Almgren-Chriss trajectory with urgency κ_0 until T_*.
- At T_* switch to different urgency $\kappa_1, \ldots, \kappa_n$ depending on performance up to T_*.

If price up at T_*, trade faster in remainder.
Single-Update (cont.)

- Switch to \(\kappa_i \) if based on accumulated gain/loss at \(T_* \)

- \(C_0, C_1, \ldots, C_n \) cost on first and second part

\[
C_0 = \sigma \int_0^{T_*} x_0(t) \, dB(t) + \eta \int_0^{T_*} x_0'(t)^2 \, dt \sim \mathcal{N}(E_0, V_0)
\]

\[
C_j = \sigma \int_{T_*}^{T} x_j(t) \, dB(t) + \eta \int_{T_*}^{T} x_j'(t)^2 \, dt \sim \mathcal{N}(E_j, V_j)
\]

- Explicit expressions for \(E[C_i] \) and \(\text{Var}[C_i] \)

- Explicit expression for \(E \) and \(\text{Var} \) of composite strategy
 \(\rightarrow \) Numerical optimization of criterion \(E + \lambda \text{Var} \) over \(\kappa_0, \ldots, \kappa_n \)
Single-Update: Numerical Results

Family of frontiers parametrized by market power μ

- $\mu = 0$
- $\mu > 0$ (i.e. $X \gg 0$)

Larger relative improvement for large portfolios $\mu \gg 0$

AC static frontiers coincide with $\mu \to 0$
2. Multiple Updates: Dynamic Programming

- Single-update does NOT generalize to multiple updates
- “E + \lambda \text{Var}“ not amenable to dynamic programming
 - Squared expectation in \text{Var}[X] = \text{E}[X^2] - \text{E}[X]^2

[Almgren, L. 2008]: Define value function

\[J_k(x, c) = \text{“minimal variance for k periods and } x \text{ shares s.t. expected cost at most } c” \]

\(J_{k-1}(x, c) \) and optimal strategies for k-1 periods

Optimal Markovian one-step control

\(J_k(x, c) \) and optimal strategies for k periods

Markov property for mean-variance efficient strategies
Dynamic Programming (cont.)

We want to determine $J_k(x, c)$

Situation:
- **Sell program** (buy program analogously)
- k periods and x shares left
- limit for expected cost is c
- current stock price S
- next price innovation is $\sigma \xi \sim N(0, \sigma^2)$

Construct optimal strategy π for k periods

1. **In current period** sell y shares at $\tilde{S} = S - h(y)$
2. Use an efficient strategy π' for remaining $x - y$ shares in remaining $k-1$ periods
Dynamic Programming (cont.)

Note: \(y \) must be deterministic, but when we begin \(\pi' \), outcome of \(\xi \) is known, i.e. we may choose \(\pi' = \pi'(\xi) \) depending on \(\xi \)

\[\Rightarrow \text{Specify } \pi'(\xi) \text{ by its expected cost } z(\xi) \]
\[\Rightarrow \text{Strategy } \pi \text{ defined by } y \in \mathbb{R} \text{ and control function } z(\xi) \]

- Expressions for cost of strategy \(\pi \) conditional on \(\xi \)
 - \(\mathbb{E}[C(\pi) | \xi] \) and \(Var[C(\pi) | \xi] \)
 - Use the laws of total expectation and variance
 - \(\mathbb{E}[C(\pi)] = \mathbb{E}[\mathbb{E}[C(\pi) | \xi]] \)
 - \(Var[C(\pi)] = \mathbb{E}[Var[C(\pi) | \xi]] + Var[\mathbb{E}[C(\pi) | \xi]] \)

Optimization of \((\mathbb{E}[C], Var[C])\) by means of \(y \) and \(z(\xi) \)
Dynamic Programming (cont.)

Value function recursion:

\[
J_k(x, c) = \min_{(y, z) \in G_k(x, c)} \left\{ \text{Var}[z(\xi) - \sigma \xi (x-y)] + E[J_{k-1}((x-y), z(\xi))] \right\}
\]

where

\[
G_k(x, c) = \left\{ (y, z) \left| \begin{array}{l}
0 \leq y \leq x, \quad E[z(\xi)] + \eta y^2 \leq c \\
y \in \mathbb{R}, \quad z \in L^1(\Omega; \mathbb{R})
\end{array} \right. \right\}
\]

(For linear price impact)
Solving the Dynamic Program

- Series of one-period optimization problems
- Each step: Determine optimal control
 - #shares to sell in next period
 - Target expected cost for remainder as function $z(\xi)$ of next period stock price change
- No closed form solution \rightarrow numerical approximation
- Nice property: Convex constrained problems
Behavior of Adaptive Strategy

Aggressive in the Money (AIM)

Formally: Control function $z(\zeta)$ is monotone increasing

Example: sell program

Spend windfall gains on increased impact costs to reduce total variance

“If price goes up, sell faster“
Efficient Frontiers

Sample cost PDFs:

Similar results as for single-update

- Larger relative improvement for large portfolios
- Market power μ

\[\frac{\text{Var}[C]}{V_{\text{lin}}} \]

\[\frac{E[C]}{E_{\text{lin}}} \]

$N = 50$

μ increasing
Single Update vs. Multi-Update

- Full improvement by multi-update
- Significant improvement even by single-update
- Multi-update naturally more computational intensive
- Single-update offers good value for low computation
Other Criteria

- Instead of mean-variance tradeoff: Utility functions
 - Exponential utility (CARA): \(u(y) = -\exp(-\alpha y) \)
 - Power law utility: \(u(y) = \frac{y^{1-\gamma} - 1}{1 - \gamma} \)
 - etc.

- Optimal strategies are AIM or PIM depending on utility
 [Schied, Schöneborn ’08]

- Advantage of mean-variance optimization
 - Clear and intuitive meaning
 - Corresponds to how trade results are reported in practice
 - Independent of client’s wealth
Extensions

- Non-linear impact functions and cost models
- Multiple securities (program trading)
- Other asset price processes
 - Price momentum (drift)
 - Mean-Reversion
 - Non-Gaussian returns
- etc.
Trading with Price Trend

”Daily Trading Cycle”: institutional traders make decisions overnight and trade across the following day

- Price momentum, if large net positions being traded

Market Model

- Stock price: Brownian motion with unknown drift α

$$S(t) = S_0 + \alpha t + \sigma B(t) \quad \text{with} \quad \alpha \sim \mathcal{N}(\bar{\alpha}, \nu^2)$$

- Prior estimate for drift, update this belief using price observations
- Temporary and permanent market impact

Optimal risk-neutral strategy (buy program)

\[x(t) = \text{trading trajectory (shares remaining) in continuous time} \]
\[v(t) = \text{instantaneous trading rate} \]

\[[\text{Almgren, L. 2007}]: \text{Optimal dynamic strategy given by instantaneous trade rate} \]

\[v_\ast(t) = \frac{x(t)}{T - t} + \hat{\alpha}(t, S(t)) \cdot \frac{T - t}{4\eta} \]

- \(\hat{\alpha}(t, S(t)) \): Best estimate of drift using prior and \(S(t) \)
- Trade rate of re-computed static trajectory with current best drift estimate
 - Locally optimal myopic strategy = Global optimal solution
 - Highly dynamic
Trading with Price Trend: Examples

Buy-program with significant upwards drift prior

Prior drift estimate

Posterior drift estimate

Stock price path

Slow down trading, if cost lower than expected (PIM)
Conclusion

- Adaptivity is the new frontier of algorithmic trading
- Single-update and multi-update arrival price algorithms
 - Pure random walk, no momentum or reversion
 - Straightforward mean-variance criterion
 - Dynamic programming approach
 - Strategies are “aggressive-in-the-money“
- Substantially *better than static Almgren/Chriss trajectories*
 - Improved efficient frontiers
 - Relative improvement bigger for large portfolios
 - New market power parameter μ
Thank you very much for your attention!

Questions?